If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.49x^2-13x+40=0
a = 0.49; b = -13; c = +40;
Δ = b2-4ac
Δ = -132-4·0.49·40
Δ = 90.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{90.6}}{2*0.49}=\frac{13-\sqrt{90.6}}{0.98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{90.6}}{2*0.49}=\frac{13+\sqrt{90.6}}{0.98} $
| 3/5=x10/ | | 2x-1=240 | | 6•(x+5)=126 | | 1.35*x-x=625 | | 3x-1=240 | | 1.74=0.75^t | | -0,12(x+8)=2,4-0,08x | | 5w+2=2w-10 | | 2^x=36^12 | | 0,6(x+2)-(0,4x–0,6)=0,2(1–x) | | 5d-3=15-d | | 72j/9=8+3j+7 | | -16v+2v+15v=3 | | 9c+2=26-3c | | 7h-5h+3h-5h+4h=20 | | 8t-7=6t+11 | | 10h-3=6h+17 | | 7b+1=4b+10 | | -(x+1)+8x=5x–9 | | 19j-6j-8j-2j=12 | | 2x2+3√2x=-2√3 | | 3^0.3^2x=27 | | 2x+6=3x–12 | | M=15+5u | | 8r(r-3)=0 | | X+3x=36-9 | | M=4,5u+25 | | 2x/5-x/5=3 | | (n+1)÷2n=25 | | 4(3n+3)=8(7n+3)+6 | | 4(x-3)/6=2(x+3)/9 | | 2(3x-1)=6x+7 |